Identification of an extracellular domain within the human PiT2 receptor that is required for amphotropic murine leukemia virus binding.
نویسندگان
چکیده
Human PiT2 (PiT2) is a multiple-membrane-spanning protein that functions as a type III sodium phosphate cotransporter and as the receptor for amphotropic murine leukemia virus (A-MuLV). Human PiT1 (PiT1), another type III sodium phosphate cotransporter, is a highly related protein that functions as a receptor for gibbon ape leukemia virus but not for A-MuLV. The ability of PiT1 and PiT2 to function as discrete viral receptors with unique properties presumably is reflected in critical residue differences between these two proteins. Early efforts to map the region(s) within PiT2 that is important for virus binding and/or entry relied on infection results obtained with PiT1-PiT2 chimeric cDNAs expressed in Chinese hamster ovary (CHOK1) cells. These attempts to localize the PiT2 virus-binding site were hampered because they were based on infectivity, not binding, assays, and therefore, receptors that bound but failed to facilitate virus entry could not be distinguished from receptors that did not bind virus. Using a more accurate topological model for PiT2 as well as an A-MuLV receptor-binding assay, we have identified extracellular domain one (ECD1) of the human PiT2 receptor as being important for A-MuLV binding and infection.
منابع مشابه
Entry of amphotropic murine leukemia virus is influenced by residues in the putative second extracellular domain of its receptor, Pit2.
Human cells express distinct but related receptors for the gibbon ape leukemia virus (GALV) and the amphotropic murine leukemia virus (A-MuLV), termed Pit1 and Pit2, respectively. Pit1 is not able to function as a receptor for A-MuLV infection, while Pit2 does not confer susceptibility to GALV. Previous studies of chimeric receptors constructed by interchanging regions of Pit1 and Pit2 failed t...
متن کاملRole of variable regions A and B in receptor binding domain of amphotropic murine leukemia virus envelope protein.
For the amphotropic murine leukemia virus (MuLV), a 208-amino-acid amino-terminal fragment of the surface unit (SU) of the envelope glycoprotein is sufficient to bind to its receptor, Pit2. Within this binding domain, two hypervariable regions, VRA and VRB, have been proposed to be important for receptor recognition. In order to specifically locate residues that are important for the interactio...
متن کاملThe amphotropic murine leukemia virus receptor gene encodes a 71-kilodalton protein that is induced by phosphate depletion.
The amphotropic murine leukemia virus (MuLV) can infect cells from a number of mammals, including humans, via its specific receptor. Basic knowledge of amphotropic MuLV receptor expression is likely to be useful in the development and improvement of gene therapy protocols based on amphotropic-pseudotyped vectors. To investigate the expression of the human receptor for the amphotropic MuLV (GLVR...
متن کاملThe central half of Pit2 is not required for its function as a retroviral receptor.
The type III sodium-dependent phosphate (NaPi) cotransporter, Pit2, is a receptor for amphotropic murine leukemia virus (A-MuLV) and 10A1 MuLV. In order to determine what is sufficient for Pit2 receptor function, a deletion mutant lacking about the middle half of the protein was made. The mutant supported entry for both viruses, unequivocally narrowing down the identification of the sequence th...
متن کاملEntry of amphotropic and 10A1 pseudotyped murine retroviruses is restricted in hematopoietic stem cell lines.
Although transduction with amphotropic murine leukemia virus (MLV) vectors has been optimized successfully for hematopoietic differentiated progenitors, gene transfer to early hematopoietic cells (stem cells) is still highly restricted. A similar restriction to gene transfer was observed in the mouse stem cell line FDC-Pmix compared with transfer in the more mature myeloid precursor cell line F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 78 2 شماره
صفحات -
تاریخ انتشار 2004